Efficiency by design
As technology advances it is critical that the design, manufacture and testing of parts and components is undertaken in an increasingly meticulous manner. For example, in such high-cost and mission-critical sectors as aerospace and automotive it is important that the equipment functions efficiently during long cycles of operation – often under extremely high pressures. It is therefore imperative that this equipment offers the highest levels of reliability and efficiency. After all, if a part or component fails in an aircraft or vehicle there is a chain of potentially serious repercussions to consider; not least of which being the safety of people on-board.
Quality, efficiency and accuracy
The importance of quality, efficiency and accuracy may seem obvious; however as someone who has worked in the product testing industry for many years I still see what are in essence very fundamental mistakes being made, which have potentially serious, even hazardous, consequences further down the line. These mistakes often occur in the early stages of development – during product design.
Paying attention to the fine detail at this stage is vital; because the prototyping, manufacturing and testing procedures that follow can be seriously jeopardised if an error is made ‘on the drawing board’. This can be a particularly serious issue when equipment designed to work under high pressures is involved and has to go through a series of cyclic fatigue tests before the equipment can be supplied to the customer.
Designers may be very able in terms of preparing a highly detailed design of a product or component as 3-D model in a computer design package – factoring-in the right materials and coatings to provide the appropriate stress rates and other material properties such as dimensions and weight. However, what needs to be constantly borne in mind is that every detail drawn in those designs will need to be carried through to manufacture. It only requires the slightest error or oversight related to a small part or component for serious problems to occur further down the line.
For example, a thread may not have been fully finished off or placed precisely in the right position; an O-ring may have been placed without careful thought to where the groove is positioned in relation to the rest of the thickness of the material. And it only requires a bolt to be put in the wrong place on the flange or for a radius to be not quite right. When these errors occur serious performance or lifecycle issues can arise.
Of course, design isn’t the only area of product development that can be at fault. The performance of equipment will also rely very heavily on the quality and suitability of the material that is used to make it. The required performance or resilience levels cannot always be guaranteed, which, again, could introduce safety or operational concerns. These concerns may mean that secondary finishing operations are required to enhance the surface strength of the material that is used for the manufacture of the outer casing of the equipment – processes such as laser peening or anodising to increase the thickness of the oxide layer on the metallic surface.
-
SOUTHERN MANUFACTURING & ELECTRONICS SHOW 2025
04 February, 2025, 9:30 - 06 February, 2025, 15:30
Farnborough International Exhibition Centre, off Aerospace Boulevard, Farnborough GU14 6TQ -
SMART Manufacturing & Engineering Week
04 - 05 June, 2025
NEC, Birmingham UK -
PPMA 2025
23 September, 2025, 9:30 - 25 September, 2025, 16:00
NEC, Birmingham UK -
Advanced Engineering Show 2025
29 October, 2025, 9:00 - 30 October, 2025, 16:00
NEC, Birmingham UK