Balancing power and precision in hydraulic robotics
Hydraulics play a critical role in robotics and automation, offering unmatched power and durability. However, the challenge lies in achieving the precision required for modern applications. Advances in control systems, hybrid technologies, and AI are helping to enhance hydraulic systems, balancing strength with accuracy for diverse industrial tasks. H&P reports
As the world embraces an era of unprecedented technological advancement, the integration of robotics and automation into manufacturing, healthcare, and heavy industry has evolved from cutting-edge innovation into standard practice. Within these developments, hydraulics has emerged as a key technology, powering everything from industrial robots on the factory floor to surgical robots in operating rooms. While electrics and pneumatics have long been employed in these fields, the unique attributes of hydraulic systems offer distinct advantages. However, the key issue surrounding their use is finding the right balance between efficiency and complexity, particularly in the context of precision-driven tasks that are now required of robots and automation systems.
Hydraulics, which utilise pressurised fluid to generate motion and control, are synonymous with strength and reliability. They provide the muscle behind heavy-duty machinery that requires substantial force, from construction equipment to large-scale manufacturing robots. However, as robotics has evolved, the tasks these machines are expected to perform have become more intricate, often demanding far more precision than the simple lifting, pressing, or rotational tasks that hydraulics have traditionally excelled in.
One of the main challenges in using hydraulic systems in modern robotics and automation is ensuring that they are capable of the precision that today's applications require. Hydraulic systems, by their very nature, tend to be better suited to high-force, low-precision tasks. The fluid dynamics that underpin hydraulic systems often introduce variables such as lag, fluid resistance, and temperature changes, all of which can impact precision. In contrast, electric actuators offer more fine-tuned control, ideal for delicate or highly accurate operations. As automation pushes deeper into sectors like healthcare and micro-manufacturing, these discrepancies in precision between hydraulic and electric systems become more apparent.
However, dismissing hydraulics for these more delicate applications would be a mistake. While electric systems are favoured for their precision, they lack the sheer power and durability that hydraulics provide. In industries where lifting, pressing, or holding heavy loads is essential, the high torque and strength of hydraulic systems are indispensable. For example, hydraulic-powered robotic arms are found in automotive assembly lines, where their capacity for high-speed, repetitive, and powerful movements makes them ideal for tasks like stamping and welding. The challenge, then, is not about replacing hydraulics but finding ways to improve their precision and responsiveness to make them suitable for more diverse applications.
Several approaches are being explored to address the precision issue in hydraulics. The introduction of smart control systems is one of the most promising solutions. By combining hydraulic systems with electronic sensors and feedback mechanisms, the precision of hydraulic-powered robots can be greatly improved. These sensors monitor variables like pressure, fluid levels, and temperature, adjusting the system in real-time to maintain consistent performance. This integration of hydraulic systems with advanced control algorithms has already seen success in fields such as aerospace, where hydraulic systems are used for critical control surfaces on aircraft.
-
AEMT Awards
21 November, 2024
Double Tree by Hilton Hotel, Coventry -
The BCAS luncheon
21 November, 2024
The Grand Hotel, 1 Church St, Birmingham B3 2FE -
LAMMA Show 2025
15 January, 2025, 8:30 - 16 January, 2025, 16:30
NEC, Birmingham UK -
SOUTHERN MANUFACTURING & ELECTRONICS SHOW 2025
04 February, 2025, 9:30 - 06 February, 2025, 15:30
Farnborough International Exhibition Centre, off Aerospace Boulevard, Farnborough GU14 6TQ