9 May, 2024

Digital sensor data demonstrates the power to transform compressed air energy consumption

17 April, 2023

He adds that data from the FTMg flow meter is made transparent through graphics presented in the SICK FTMg Monitoring App. With the click of a button, users can start visualising all this continuous compressed air data in a way that is easy to use and interpret. As well as values for pressure, temperature, flow velocity, mass flow rate and volumetric flow rate in real time, the system provides totals for energy use, volume and mass over a pre-defined period.

The user-friendly dashboard makes it easy to interpret data to detect leaks or overconsumption and to look for changes and trends. Email alerts can be set up for maintenance reminders or to give pre-defined warnings with job recommendations, for example, when data strays beyond pre-defined limits. Users can drill down to identify costs, for example for individual production centres or by shift.

Unexpected Insights

Pratt says we are already seeing how early adopters of the FTMg Monitoring App are gaining unexpected insights. They have been able, for example, to make start-up and shutdown management of processes and machines more efficient, improve compressor control, and manage peak loads.

By tracking consumption over time, Pratt explains that losses are easier to spot and correct. For example, he highlights that energy waste is clear if the compressed air usage graph does not baseline close to zero at weekends. Is there a surge in power usage on a Monday morning when machines are turned on? Then, perhaps, a more efficient power-up sequence could be adopted to prevent overloading the compressor.

The system makes it possible to monitor energy usage close to the machine cells where the compressed air is being used. Armed with additional information, production teams can pose specific questions: How much air is cell number 1 using, compared to cell number 2? If cell no 3 uses a lot more compressed air energy, then keep it offline as long as possible. How much compressed air energy is needed to produce one type of component compared to another?

As well as enabling resources to be used more sustainably, the data insights support better operational efficiency and help achieve reduced carbon targets. The information can contribute towards ISO50001 Energy Management certification, or compliance with the UK Government’s Energy Saving Opportunity Scheme (ESOS).

The SICK FTMg, which stands for Flow Thermal Meter for inert gases, uses the dynamic calorimetric principle for precision measurement, enabling it to detect even the smallest changes reliably. Up to eight FTMG flow meters can be configured via each SICK Smart Services Gateway, which collects data, aggregates and encrypts it before sending it securely via the customer’s own IT infrastructure through a firewall to the SICK cloud. Alternatively, it is possible to by-pass the IT infrastructure by using mobile communications over 3G or 4G. Individuals then have access through a personal SICK ID from any device with a web browser

Pratt adds that SICK also offers alternatives for customers who do not require the FTMg Monitoring App. For customers wishing to integrate SICK FTMg flow meters into their own IT systems, one or more devices can be used with an IIoT gateway, such as the TDC-E from SICK, for data pre-processing and integration into customer-specific MES, cloud or energy management systems.

Measurable payback

Wasted compressed air adds up to a huge energy costs and carbon emissions that are easily fixed. According to the Carbon Trust, UK industry uses over 10TWh of electricity a year to compress air 2 equivalent to almost 1.5 power stations. It’s not just the wasted energy, the usage equates to 5 million tonnes of CO2 emitted into the atmosphere.

Understanding the importance of compressed air energy efficiency as part of total cost of ownership demonstrates the benefits of investment in efficient in-line, real time instrumentation – especially when combined with the data transparency that is unlocked by new digital services. The payback could be instantly measurable.

1. British Compressed Air Society Reducing Energy Consumption from Compressed Air Usage

2. Carbon Trust, Compressed air, Opportunities for Business (2012)

https://twitter.com/SICK_UK

https://www.linkedin.com/company/sicksensorintelligence/




Events
 
Buyers' Guide Search
 
Search for UK supplier by name
Browse by Product Group.
Magazine
MARCH 2024To view a digital copy of the MARCH 2024 edition of Hydraulics & Pneumatics Magazine, click here.

For a FREE subscription please click here

To visit the Library for past issues click here

JANUARY/FEBRUARY 2024 IssueTo view a digital copy of the JANUARY/FEBRUARY 2024 edition of Hydraulics & Pneumatics Magazine, click here.

For a FREE subscription please click here

To visit the Library for past issues click here

JULY/AUG 2023 Issue inc. BUYERS' GUIDETo view a digital copy of the JULY/AUGUST ISSUE of Hydraulics & Pneumatics magazine that includes the ANNUAL BUYERS' Guide for 2023, click here.

To visit the Library for past issues click here

BFPA YearbookTo read the latest BFPA Yearbook, click here ..
BFPA Training AcademyClick the image to go to the BFPA Training Academy website
Compressed Air & Vacuum Technology Guide 2018To read the official BCAS Compressed Air & Vacuum Technology Guide 2018 click here
Offshore Europe Journal
Newsletter
 
Newsletter